Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sheng Li Xue Bao ; 73(4): 597-605, 2021 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-34405216

RESUMO

Prostaglandin E2 (PGE2) plays an important role in cardiovascular system. PGE2 regulates blood pressure through its 4 G protein coupled receptors, i.e., EP1, EP2, EP3, and EP4. The aim of this study was to investigate the role of EP4 receptors in vascular smooth muscle cells (VSMC) in blood pressure regulation. VSMC-specific human EP4 transgenic (VSMC-hEP4 Tg) mice were generated and genotyped. The systolic blood pressure (SBP) of the VSMC-hEP4 Tg mice and the wild-type (WT) littermates was measured under normal, low-salt (LSD) and high-salt diet (HSD) conditions using a tail-cuff method. Both WT and VSMC-hEP4 Tg mice were administered with a chronic infusion of angiotensin II (Ang II) with an osmotic pump and SBP levels were monitored every week. The mean arterial blood pressure (MAP) of WT and VSMC-hEP4 Tg mice upon Ang II intravenous infusion was measured via carotid arterial catheterization. Ang II-induced vasoconstriction of the mesenteric arterial rings from WT and VSMC-hEP4 Tg mice was measured using the multi myograph system. The effect of PGE1-OH (a selective EP4 agonist) on Ang II-induced phosphorylation of myosin phosphatase target subunit 1 (MYPT1) was detected by Western blot. The effect of two additional EP4 specific agonists (CAY10580 and CAY10598, 0.5 mg/kg) on blood pressure of WT mice was measured by carotid arterial catheterization. The results showed that the VSMC-hEP4 Tg mice were successfully generated and their basal SBP levels were lower than those of WT mice. Although blood pressure levels were significantly altered in WT mice under LSD and HSD, little change was observed in the VSMC-hEP4 Tg mice. After a chronic infusion and an acute intravenous injection of Ang II, SBP levels of VSMC-hEP4 Tg mice were significantly lower than those of WT mice. In addition, both CAY10580 and CAY10598 significantly reduced MAP levels of WT mice. Ex vivo study showed that treatment of isolated mesenteric arteries with PGE1-OH inhibited Ang II-induced phosphorylation of MYPT1. Collectively, these results demonstrate that specific overexpression of human EP4 gene in VSMCs significantly reduces basal blood pressure levels and attenuates Ang II-induced hypertension, possibly via inhibiting Ang II/AT1 signaling pathway. Our findings suggest that EP4 may represent an attractive target for the treatment of hypertension.


Assuntos
Angiotensina II , Hipertensão , Animais , Humanos , Hipertensão/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular , Miócitos de Músculo Liso
2.
Sheng Li Xue Bao ; 71(2): 361-370, 2019 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-31008497

RESUMO

Prostaglandin E2 (PGE2) is a cyclooxygenase metabolite of arachidonic acid. It acts as a bioactive lipid and plays an important role in regulating many biological processes. PGE2 binds to 4 different G protein-coupled receptors including prostaglandin E2 receptor subtypes EP1, EP2, EP3 and EP4. The EP4 receptor is widely expressed in most of human organs and tissues. Increasing evidence demonstrates that EP4 is essential for cardiovascular homeostasis and participates in the pathogenesis of many cardiovascular diseases. Here we summarize the role of EP4 in the regulation of cardiovascular function and discuss potential mechanisms by which EP4 is involved in the development of cardiovascular disorders with a focus on its effect on inflammation.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Dinoprostona/fisiologia , Receptores de Prostaglandina E Subtipo EP4/fisiologia , Ciclo-Oxigenase 2 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...